Mathematik: Lineare Algebra mit dem Austauschverfahren
Released by matroid on Do. 04. Juni 2020 17:16:25
Written by lewis - (90 x read)
Lineare Algebra 
Das Austauschverfahren ist ein allgemeines — inzwischen leider vernachlässigtes — Werkzeug der Linearen Algebra. Mit entsprechenden Anpassungen kann man damit
  • einen Basiswechsel durchführen,
  • den Rang einer Matrix ablesen,
  • Matrizen invertieren,
  • lineare Gleichungssysteme und Matrizengleichungen lösen,
  • Determinanten berechnen,
  • und Eigenvektoren finden.
mehr... | 8803 Bytes mehr | Kommentare? | Druckbare Version 


Mathematik: Calculating sequence element a(16) of OEIS A108235
Released by matroid on Sa. 18. April 2020 18:31:10
Written by StrgAltEntf - (833 x read)
Mathematik 
Abstract

The On-Line Encyclopedia of Integer Sequences (OEIS) lists under the identifier A108235 the following sequence:

$a(n)=$ Number of partitions of $\{1,2,...,3n\}$ into $n$ triples $(X,Y,Z)$ each satisfying $X+Y=Z$.

The following values can be found there (status on Apr 18 2020)
n       a(n)
1          1
2          0
3          0
4          8
5         21
6          0
7          0
8       3040
9      20505
10         0
11         0
12  10567748
13 103372655
14         0
15         0

For example, $a(4)=8$, and there are the following eight partitions of set $\{1,2,...,12\}$.
No. 1 (1 5 6) (2 8 10) (3 9 12) (4 7 11)
No. 2 (1 5 6) (2 9 11) (3 7 10) (4 8 12)
No. 3 (1 6 7) (2 10 12) (3 8 11) (4 5 9)
No. 4 (1 8 9) (2 10 12) (3 4 7) (5 6 11)
No. 5 (1 9 10) (2 4 6) (3 8 11) (5 7 12)
No. 6 (1 10 11) (2 5 7) (3 6 9) (4 8 12)
No. 7 (1 11 12) (2 6 8) (3 7 10) (4 5 9)
No. 8 (1 11 12) (2 7 9) (3 5 8) (4 6 10)

Now we are happy to announce that we can add two more members to this sequence. The following holds.
\[a(16)=142664107305\]
\[a(17)=1836652173363\]
Furthermore, we were able to calculate the member \(a'(43)\) for the related sequence A002849.
\[a'(43)=16852166906\]


mehr... | 23715 Bytes mehr | 7 Kommentare | Druckbare Version 


Mathematik: Lösen von Linearen Optimierungsproblemen mit Java
Released by matroid on Di. 07. April 2020 21:44:30
Written by Delastelle - (303 x read)
Software 
Im Rahmen meiner Diplomarbeit habe ich im Jahr 2001 C/C++ Programme von Robert J.Vanderbei zur Linearen Optimierung in Java implementiert. Kern sind 2 LP-Löser - ein Simplexartiges Verfahren und ein Innere-Punkt-Verfahren.
Damit kann man schnell kleine, mittlere und auch große Optimierungsprobleme lösen.
mehr... | 11278 Bytes mehr | Kommentare? | Druckbare Version 


Mathematik: Jenseits der quadratischen Ergänzung
Released by matroid on So. 09. Februar 2020 14:17:23
Written by Gerhardus - (321 x read)
Mathematik 
Jenseits der quadratischen Ergänzung - Wesentliches über die Mathematik von Parabeln

Elementare Beweise für quadratische Funktionen und Parabeln diesseits und jenseits der Schulmathematik: Geometrie, Algebra, Koeffizientenvergleich, Lösungsmethoden, Vieta jumping, Tangenten, Brennpunkt-Eigenschaft, die Parabel als echter Kegelschnitt, Quadratur des Archimedes und Parabeln mit beliebigen Achsen in der x-y-Ebene. Für jeden, der mehr will als die gewöhnlichen Lehrbücher bieten. Mein 13. matheplanet-Artikel des lapidaren Wissens mit über 20 Sätzen. Zum Jenseits bitte hier klicken. Hier geht es weiter zum
mehr... | 7554 Bytes mehr | Kommentare? | Druckbare Version 


Mathematik: Ramsey-Zahlen
Released by matroid on Mo. 23. Dezember 2019 20:06:37
Written by Triceratops - (363 x read)
Mathematik 

Ramsey-Zahlen

Silvester steht vor der Tür. Auf so einer Silvesterparty sehen sich manche Gäste zum ersten mal und kannten sich vorher nur über Ecken. Es gibt also unterschiedlich große Gruppen von einander Bekannten und Gruppen von einander Fremden. Wie groß können diese Gruppen sein? Oder genauer gesagt, wie groß muss die Anzahl der Gäste überhaupt sein, damit es auf jeden Fall eine Gruppe von $n$ Bekannten oder eine Gruppe von $m$ Fremden gibt? (Beides gleichzeitig können wir natürlich nicht erwarten.) Oder gibt es überhaupt so eine Anzahl? Das Theorem von Ramsey sagt, dass es tatsächlich eine solche Anzahl gibt. Die Mindestanzahl von benötigten Gästen wird als Ramsey-Zahl $R(n,m)$ definiert. Bis heute sind nur relativ wenige konkrete Werte von $R(n,m)$ bekannt. Es gilt zum Beispiel $R(4,4)=18$, was bedeutet, dass es auf einer Party mit $18$ Gästen (aber nicht unbedingt auf einer Party mit $17$ Gästen) auf jeden Fall $4$ Bekannte oder $4$ Fremde gibt. Dieser Artikel gibt eine kurze Einführung in Ramsey-Zahlen.

mehr... | 18173 Bytes mehr | Kommentare? | Druckbare Version 


Mathematik: Anzahl der Abbildungen $f$ mit $f^p = f^q$
Released by matroid on Fr. 13. Dezember 2019 21:45:02
Written by Triceratops - (415 x read)
Mathematik 

Anzahl der Abbildungen $f$ mit $f^p=f^q$

Für feste natürliche Zahlen $n,p,q$ bestimmen wir die Anzahl der Abbildungen $f : \{1,\dotsc,n\} \to \{1,\dotsc,n\}$ mit $f^p = f^q$, wobei $f^p$ die $p$-fache Verkettung von $f$ sei. Wir leiten insbesondere für festes $p \geq 2$ und $q=1$ die erzeugende Funktion $\exp(\sum_{d ~\mid~ p-1} \frac{1}{d} (z \cdot \exp(z))^d)$ für die Anzahlen her. Am Ende zeigen wir eine alternative Herleitung auf, die mit kombinatorischen Spezies arbeitet. Das folgende Bild zeigt zum Beispiel eine Abbildung $f$ mit $f^6=f^2$.

<math>
\newcommand{\rdot}{\textcolor{red}{$\bullet$}}
\newcommand{\bdot}{\textcolor{blue}{$\bullet$}}
\begin{tikzpicture}[inner sep=0pt,>=latex]
\node (W1) at (0,1) {\bdot};
\node (W2) at (1,1.8) {\bdot};
\node (W3) at (2,1) {\bdot};
\node (W4) at (1,0.2) {\bdot};
\node (A1) at (-1.1,1) {\rdot};
\node (A2) at (-2,2) {\rdot};
\node (A3) at (-2,0) {\rdot};
\node (B1) at (3.2,2) {\rdot};
\node (B2) at (3.2,0) {\rdot};
\draw [blue,->] (W1) to (W2);
\draw [blue,->] (W2) to (W3);
\draw [blue,->] (W3) to (W4);
\draw [blue,->] (W4) to (W1);
\draw [red,->] (A1) to (W1);
\draw [red,->,bend right=10] (A2) to (A1);
\draw [red,->,bend left=10] (A3) to (A1);
\draw [red,->,bend left=10] (B1) to (W3);
\draw [red,->,bend right=10] (B2) to (W3);
\end{tikzpicture}</math>
mehr... | 36061 Bytes mehr | 1 Kommentar | Druckbare Version 


Mathematik: Ein schwieriges Problem auf der IMO
Released by matroid on So. 08. Dezember 2019 08:36:17
Written by trunx - (1720 x read)
Mathematik 
Auf der Wikipediaseite "Internationale Mathematik-Olympiade" werden die zwei schwersten Probleme genannt, die je auf einer IMO gestellt worden sind. Beide Aufgaben konnten nur von 11 Schülern gelöst werden, einmal (1986) bei insgesamt 210, das zweite Mal (1988) bei insgesamt 268 Teilnehmern.

Während für die erste dieser Aufgaben auch eine Lösung verlinkt wurde, habe ich für die zweite Aufgabe keine Lösung im Internet gefunden (aber auch nicht wirklich intensiv danach gesucht). Da es zudem hieß, dass weder die Mitglieder des Aufgabenausschusses noch von ihnen beauftragte Mathematiker des entsprechenden Fachgebietes (Zahlentheorie) die Aufgabe in 6h lösen konnten, war bei mir das Interesse geweckt.

Die Aufgabe lautete (siehe hier):

Let \(a\) and \(b\) positive integers such that \(ab+1\) divides \(a^2 +b^2\). Show that
\[\frac{a^2 +b^2}{ab+1}\] is the square of an integer.

(dt. lt. wikipedia: Sind \(a\) und \(b\) natürliche Zahlen, sodass \[c=\frac{a^2 +b^2}{ab+1}\] ebenfalls eine natürliche Zahl ist, ist c sogar eine Quadratzahl.)

Ich habe deutlich mehr als 6h für die Lösung gebraucht, aber es hat Spass gemacht. Daher, wer es selbst probieren will, macht jetzt besser den PC aus und rechnet!

Nachtrag: Die nachgelieferte Zuendeführung des angekündigten Beweises findet sich im nächsten Abschnitt in blauer Schrift.
mehr... | 9193 Bytes mehr | 42 Kommentare | Druckbare Version 


Mathematik: Galois-Verbindungen
Released by matroid on Do. 21. November 2019 22:39:52
Written by Triceratops - (498 x read)
Mathematik 

Galois-Verbindungen

Ausgehend von einer einfachen Beobachtung zwischen der Bildmenge und der Urbildmenge gelangen wir zum Begriff einer Galois-Verbindung. Dieser wird in diesem Artikel untersucht. Wir beweisen einfache Eigenschaften von Galois-Verbindungen und geben ein paar einfache Anwendungen an. Insbesondere finden wir damit einen konzeptionellen Beweis für eine ganze Reihe von Charakterisierungen von injektiven bzw. surjektiven Abbildungen. Im letzten Abschnitt zeigen wir dann die Nützlichkeit von Galois-Korrespondenzen auf, wofür der Hauptsatz der Galoistheorie das prominenteste Beispiel ist. Abgesehen von den Beispielen sind für das Verständnis dieses Artikels lediglich Grundbegriffe der Mengenlehre und der Ordnungstheorie nötig.
mehr... | 33605 Bytes mehr | 4 Kommentare | Druckbare Version 


[Weitere 8 Artikel]
 

  
Buchbesprechung

Zangwill, Andrew
Modern Electrodynamics

Rezensiert von Berufspenner:
Dieses Buch ist ein wahnsinnig umfangreiches und modernes Werk zur Elektrodynamik. Auf knapp 1000 Seiten beleuchtet Andrew Zangwill nahezu alle Aspekte der Elektrodynamik und geht dabei weit über die Grenzen üblicher Vorlesungsinhalte hinaus. Dabei schafft er es das ganze Buch ... [mehr...]
: Elektrodynamik :: Elektrizitätslehre :: Elektromagnetische Wellen :: Lehrbuch :: Relativitätstheorie :
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
Freitag, 12. Juli


Montag, 06. Mai


Samstag, 27. April


Freitag, 26. April


Montag, 22. April


Samstag, 20. April


Montag, 25. März


Montag, 18. Februar


Montag, 03. Dezember


Samstag, 06. Oktober


Montag, 24. September


Sonntag, 19. August


Mittwoch, 23. Mai


Donnerstag, 26. April


Mittwoch, 11. April


Dienstag, 27. Februar


Mittwoch, 21. Februar


Donnerstag, 08. Februar


Sonntag, 04. Februar


Mittwoch, 10. Januar


Sonntag, 31. Dezember


Donnerstag, 28. Dezember


Montag, 11. Dezember


Sonntag, 03. Dezember


Dienstag, 24. Oktober


Samstag, 07. Oktober


Donnerstag, 24. August


Samstag, 12. August


Sonntag, 30. Juli


Samstag, 10. Juni


Ältere Ärtikel

TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]